How to add message history
This guide assumes familiarity with the following concepts:
Passing conversation state into and out a chain is vital when building a chatbot. The RunnableWithMessageHistory
class lets us add message history to certain types of chains. It wraps another Runnable and manages the chat message history for it.
Specifically, it can be used for any Runnable that takes as input one of:
- a sequence of
BaseMessages
- a dict with a key that takes a sequence of
BaseMessages
- a dict with a key that takes the latest message(s) as a string or sequence of
BaseMessages
, and a separate key that takes historical messages
And returns as output one of
- a string that can be treated as the contents of an
AIMessage
- a sequence of
BaseMessage
- a dict with a key that contains a sequence of
BaseMessage
Let's take a look at some examples to see how it works. First we construct a runnable (which here accepts a dict as input and returns a message as output):
- OpenAI
- Anthropic
- Cohere
- FireworksAI
- MistralAI
- TogetherAI
pip install -qU langchain-openai
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
pip install -qU langchain-anthropic
import getpass
import os
os.environ["ANTHROPIC_API_KEY"] = getpass.getpass()
from langchain_anthropic import ChatAnthropic
llm = ChatAnthropic(model="claude-3-sonnet-20240229")
pip install -qU langchain-google-vertexai
import getpass
import os
os.environ["GOOGLE_API_KEY"] = getpass.getpass()
from langchain_google_vertexai import ChatVertexAI
llm = ChatVertexAI(model="gemini-pro")
pip install -qU langchain-cohere
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass()
from langchain_cohere import ChatCohere
llm = ChatCohere(model="command-r")
pip install -qU langchain-fireworks
import getpass
import os
os.environ["FIREWORKS_API_KEY"] = getpass.getpass()
from langchain_fireworks import ChatFireworks
llm = ChatFireworks(model="accounts/fireworks/models/mixtral-8x7b-instruct")
pip install -qU langchain-mistralai
import getpass
import os
os.environ["MISTRAL_API_KEY"] = getpass.getpass()
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(model="mistral-large-latest")
pip install -qU langchain-openai
import getpass
import os
os.environ["TOGETHER_API_KEY"] = getpass.getpass()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key=os.environ["TOGETHER_API_KEY"],
model="mistralai/Mixtral-8x7B-Instruct-v0.1",)
# | output: false
# | echo: false
%pip install -qU langchain langchain_anthropic
import os
from getpass import getpass
from langchain_anthropic import ChatAnthropic
os.environ["ANTHROPIC_API_KEY"] = getpass()
model = ChatAnthropic(model="claude-3-haiku-20240307", temperature=0)
API Reference:
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_openai.chat_models import ChatOpenAI
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You're an assistant who's good at {ability}. Respond in 20 words or fewer",
),
MessagesPlaceholder(variable_name="history"),
("human", "{input}"),
]
)
runnable = prompt | model
API Reference:
To manage the message history, we will need:
- This runnable;
- A callable that returns an instance of
BaseChatMessageHistory
.
Check out the memory integrations page for implementations of chat message histories using Redis and other providers. Here we demonstrate using an in-memory ChatMessageHistory
as well as more persistent storage using RedisChatMessageHistory
.
In-memoryβ
Below we show a simple example in which the chat history lives in memory, in this case via a global Python dict.
We construct a callable get_session_history
that references this dict to return an instance of ChatMessageHistory
. The arguments to the callable can be specified by passing a configuration to the RunnableWithMessageHistory
at runtime. By default, the configuration parameter is expected to be a single string session_id
. This can be adjusted via the history_factory_config
kwarg.
Using the single-parameter default:
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
store = {}
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
with_message_history = RunnableWithMessageHistory(
runnable,
get_session_history,
input_messages_key="input",
history_messages_key="history",
)
Note that we've specified input_messages_key
(the key to be treated as the latest input message) and history_messages_key
(the key to add historical messages to).
When invoking this new runnable, we specify the corresponding chat history via a configuration parameter:
with_message_history.invoke(
{"ability": "math", "input": "What does cosine mean?"},
config={"configurable": {"session_id": "abc123"}},
)
AIMessage(content='Cosine is a trigonometric function that represents the ratio of the adjacent side to the hypotenuse of a right triangle.', response_metadata={'id': 'msg_017rAM9qrBTSdJ5i1rwhB7bT', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 32, 'output_tokens': 31}}, id='run-65e94a5e-a804-40de-ba88-d01b6cd06864-0')
# Remembers
with_message_history.invoke(
{"ability": "math", "input": "What?"},
config={"configurable": {"session_id": "abc123"}},
)
AIMessage(content='Cosine is a trigonometric function that represents the ratio of the adjacent side to the hypotenuse of a right triangle.', response_metadata={'id': 'msg_017hK1Q63ganeQZ9wdeqruLP', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 68, 'output_tokens': 31}}, id='run-a42177ef-b04a-4968-8606-446fb465b943-0')
# New session_id --> does not remember.
with_message_history.invoke(
{"ability": "math", "input": "What?"},
config={"configurable": {"session_id": "def234"}},
)
AIMessage(content="I'm an AI assistant skilled in mathematics. How can I help you with a math-related task?", response_metadata={'id': 'msg_01AYwfQ6SH5qz8ZQMW3nYtGU', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 28, 'output_tokens': 24}}, id='run-c57d93e3-305f-4c0e-bdb9-ef82f5b49f61-0')
The configuration parameters by which we track message histories can be customized by passing in a list of ConfigurableFieldSpec
objects to the history_factory_config
parameter. Below, we use two parameters: a user_id
and conversation_id
.
from langchain_core.runnables import ConfigurableFieldSpec
store = {}
def get_session_history(user_id: str, conversation_id: str) -> BaseChatMessageHistory:
if (user_id, conversation_id) not in store:
store[(user_id, conversation_id)] = ChatMessageHistory()
return store[(user_id, conversation_id)]
with_message_history = RunnableWithMessageHistory(
runnable,
get_session_history,
input_messages_key="input",
history_messages_key="history",
history_factory_config=[
ConfigurableFieldSpec(
id="user_id",
annotation=str,
name="User ID",
description="Unique identifier for the user.",
default="",
is_shared=True,
),
ConfigurableFieldSpec(
id="conversation_id",
annotation=str,
name="Conversation ID",
description="Unique identifier for the conversation.",
default="",
is_shared=True,
),
],
)
with_message_history.invoke(
{"ability": "math", "input": "Hello"},
config={"configurable": {"user_id": "123", "conversation_id": "1"}},
)
API Reference:
AIMessage(content='Hello! How can I assist you with math today?', response_metadata={'id': 'msg_01UdhnwghuSE7oRM57STFhHL', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 27, 'output_tokens': 14}}, id='run-3d53f67a-4ea7-4d78-8e67-37db43d4af5d-0')
Examples with runnables of different signaturesβ
The above runnable takes a dict as input and returns a BaseMessage. Below we show some alternatives.
Messages input, dict outputβ
from langchain_core.messages import HumanMessage
from langchain_core.runnables import RunnableParallel
chain = RunnableParallel({"output_message": model})
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in store:
store[session_id] = ChatMessageHistory()
return store[session_id]
with_message_history = RunnableWithMessageHistory(
chain,
get_session_history,
output_messages_key="output_message",
)
with_message_history.invoke(
[HumanMessage(content="What did Simone de Beauvoir believe about free will")],
config={"configurable": {"session_id": "baz"}},
)
API Reference:
{'output_message': AIMessage(content='Simone de Beauvoir was a prominent French existentialist philosopher who had some key beliefs about free will:\n\n1. Radical Freedom: De Beauvoir believed that humans have radical freedom - the ability to choose and define themselves through their actions. She rejected determinism and believed that we are not simply products of our biology, upbringing, or social circumstances.\n\n2. Ambiguity of the Human Condition: However, de Beauvoir also recognized the ambiguity of the human condition. While we have radical freedom, we are also situated beings constrained by our facticity (our given circumstances and limitations). This creates a tension and anguish in the human experience.\n\n3. Responsibility and Bad Faith: With this radical freedom comes great responsibility. De Beauvoir criticized "bad faith" - the tendency of people to deny their freedom and responsibility by making excuses or hiding behind social roles and norms.\n\n4. Ethical Engagement: For de Beauvoir, true freedom and authenticity required ethical engagement with the world and with others. We must take responsibility for our choices and their impact on others.\n\nOverall, de Beauvoir saw free will as a core aspect of the human condition, but one that is fraught with difficulty and ambiguity. Her philosophy emphasized the importance of owning our freedom and using it to ethically shape our lives and world.', response_metadata={'id': 'msg_01A78LdxxsCm6uR8vcAdMQBt', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 20, 'output_tokens': 293}}, id='run-9447a229-5d17-4b20-a48b-7507b78b225a-0')}
with_message_history.invoke(
[HumanMessage(content="How did this compare to Sartre")],
config={"configurable": {"session_id": "baz"}},
)
{'output_message': AIMessage(content="Simone de Beauvoir's views on free will were quite similar, but not identical, to those of her long-time partner Jean-Paul Sartre, another prominent existentialist philosopher.\n\nKey similarities:\n\n1. Radical Freedom: Both de Beauvoir and Sartre believed that humans have radical, unconditioned freedom to choose and define themselves.\n\n2. Rejection of Determinism: They both rejected deterministic views that see humans as products of their circumstances or biology.\n\n3. Emphasis on Responsibility: They agreed that with radical freedom comes great responsibility for one's choices and their consequences.\n\nKey differences:\n\n1. Ambiguity of the Human Condition: While Sartre emphasized the pure, unconditioned nature of human freedom, de Beauvoir recognized the ambiguity of the human condition - our freedom is constrained by our facticity (circumstances).\n\n2. Ethical Engagement: De Beauvoir placed more emphasis on the importance of ethical engagement with the world and others, whereas Sartre's focus was more on the individual's freedom.\n\n3. Gendered Perspectives: As a woman, de Beauvoir's perspective was more attuned to issues of gender and the lived experience of women, which shaped her views on freedom and ethics.\n\nSo in summary, while Sartre and de Beauvoir shared a core existentialist philosophy centered on radical human freedom, de Beauvoir's thought incorporated a greater recognition of the ambiguity and ethical dimensions of the human condition. This reflected her distinct feminist and phenomenological approach.", response_metadata={'id': 'msg_01U6X3KNPufVg3zFvnx24eKq', 'model': 'claude-3-haiku-20240307', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 324, 'output_tokens': 338}}, id='run-c4a984bd-33c6-4e26-a4d1-d58b666d065c-0')}
Messages input, messages outputβ
RunnableWithMessageHistory(
model,
get_session_history,
)
RunnableWithMessageHistory(bound=RunnableBinding(bound=RunnableBinding(bound=RunnableLambda(_enter_history), config={'run_name': 'load_history'})
| RunnableBinding(bound=ChatAnthropic(model='claude-3-haiku-20240307', temperature=0.0, anthropic_api_url='https://api.anthropic.com', anthropic_api_key=SecretStr('**********'), _client=<anthropic.Anthropic object at 0x1077ff5b0>, _async_client=<anthropic.AsyncAnthropic object at 0x1321c71f0>), config_factories=[<function Runnable.with_listeners.<locals>.<lambda> at 0x1473dd000>]), config={'run_name': 'RunnableWithMessageHistory'}), get_session_history=<function get_session_history at 0x1374c7be0>, history_factory_config=[ConfigurableFieldSpec(id='session_id', annotation=<class 'str'>, name='Session ID', description='Unique identifier for a session.', default='', is_shared=True, dependencies=None)])
Dict with single key for all messages input, messages outputβ
from operator import itemgetter
RunnableWithMessageHistory(
itemgetter("input_messages") | model,
get_session_history,
input_messages_key="input_messages",
)
RunnableWithMessageHistory(bound=RunnableBinding(bound=RunnableBinding(bound=RunnableAssign(mapper={
input_messages: RunnableBinding(bound=RunnableLambda(_enter_history), config={'run_name': 'load_history'})
}), config={'run_name': 'insert_history'})
| RunnableBinding(bound=RunnableLambda(itemgetter('input_messages'))
| ChatAnthropic(model='claude-3-haiku-20240307', temperature=0.0, anthropic_api_url='https://api.anthropic.com', anthropic_api_key=SecretStr('**********'), _client=<anthropic.Anthropic object at 0x1077ff5b0>, _async_client=<anthropic.AsyncAnthropic object at 0x1321c71f0>), config_factories=[<function Runnable.with_listeners.<locals>.<lambda> at 0x1473df6d0>]), config={'run_name': 'RunnableWithMessageHistory'}), get_session_history=<function get_session_history at 0x1374c7be0>, input_messages_key='input_messages', history_factory_config=[ConfigurableFieldSpec(id='session_id', annotation=<class 'str'>, name='Session ID', description='Unique identifier for a session.', default='', is_shared=True, dependencies=None)])
Persistent storageβ
In many cases it is preferable to persist conversation histories. RunnableWithMessageHistory
is agnostic as to how the get_session_history
callable retrieves its chat message histories. See here for an example using a local filesystem. Below we demonstrate how one could use Redis. Check out the memory integrations page for implementations of chat message histories using other providers.
Setupβ
We'll need to install Redis if it's not installed already:
%pip install --upgrade --quiet redis
Start a local Redis Stack server if we don't have an existing Redis deployment to connect to:
docker run -d -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
REDIS_URL = "redis://localhost:6379/0"
LangSmithβ
LangSmith is especially useful for something like message history injection, where it can be hard to otherwise understand what the inputs are to various parts of the chain.
Note that LangSmith is not needed, but it is helpful. If you do want to use LangSmith, after you sign up at the link above, make sure to uncoment the below and set your environment variables to start logging traces:
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
Updating the message history implementation just requires us to define a new callable, this time returning an instance of RedisChatMessageHistory
:
from langchain_community.chat_message_histories import RedisChatMessageHistory
def get_message_history(session_id: str) -> RedisChatMessageHistory:
return RedisChatMessageHistory(session_id, url=REDIS_URL)
with_message_history = RunnableWithMessageHistory(
runnable,
get_message_history,
input_messages_key="input",
history_messages_key="history",
)
API Reference:
We can invoke as before:
with_message_history.invoke(
{"ability": "math", "input": "What does cosine mean?"},
config={"configurable": {"session_id": "foobar"}},
)
AIMessage(content='Cosine is a trigonometric function that represents the ratio of the adjacent side to the hypotenuse in a right triangle.')
with_message_history.invoke(
{"ability": "math", "input": "What's its inverse"},
config={"configurable": {"session_id": "foobar"}},
)
AIMessage(content='The inverse of cosine is the arccosine function, denoted as acos or cos^-1, which gives the angle corresponding to a given cosine value.')
Looking at the Langsmith trace for the second call, we can see that when constructing the prompt, a "history" variable has been injected which is a list of two messages (our first input and first output).
Next stepsβ
You have now learned one way to manage message history for a runnable.
To learn more, see the other how-to guides on runnables in this section.